
CSCI 210: Computer Architecture

Lecture 9: Logical Operations

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: Kathleen Britton

• Applied mathematician and
computer scientist

• Wrote the first assembly
language and assembler in
1947

• Collaborated with Andrew
Booth to develop three early
computers: the ARC (Automatic
Relay Calculator), SEC (Simple
Electronic Computer), and
APE(X)C

• Later worked with neural nets

Logical Operations

• Instructions for bitwise manipulation

• Useful for extracting and inserting groups of bits in a word

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

Shift Operations

• shamt: how many positions to shift

• Shift left logical

– Shift left and fill with 0 bits

– sll by n bits multiplies by 2n

• Shift right logical

– Shift right and fill with 0 bits

– srl by n bits divides by 2n (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

MIPS shift instructions

sll $t0, $s1, 2

t0 = s1 << 2

0 0 17 8 2 0x0
opcode rs rt rd sa funct

Shift left logical

• 0110 1001 << 2 in 8 bits

– Most significant 2 bits are dropped

– 2 0s are added to become the least significant bits

– Result: 01 1010 0100 => 1010 0100

Shift right logical

• 1010 1001 >>> 3 in 8 bits

– Least significant 3 bits are dropped

– 3 0s are added to become the most significant bits

– Result: 0001 0101 001 => 0001 0101

Shift right arithmetic

• sra rd, rt, shamt

– Shift right and copy the sign bit

• 1010 1001 >> 3 in 8 bits

– Least significant 3 bits are dropped

– 3 1s are added because the MSB is 1 to become the most significant
bits

– Result: 1111 0101 001 => 1111 0101

A new op HEXSHIFTRIGHT shifts hex numbers right
by a digit. HEXSHIFTRIGHT i times is equivalent to

A. Dividing by i

B. Dividing by 2i

C. Dividing by 16i

D. Multiplying by 16i

Remember Boolean Operations?

• and, or, not . . .

• Now we’ll apply them to bits!

• Just think of 1 as True, and 0 as False

And Truth Table

0 1

0 0 0

1 0 1

AND Operations
• Useful to mask bits in a word

– Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

AND identities (for a single bit)

• x & 0 =

• x & 1 =

01101001

& 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

If we want to zero out bits* 3 – 0 in a byte we
should AND with

A. 00000000

B. 00001111

C. 11110000

D. 11111111

*MSB (bit 7) is on the left,
 LSB (bit 0) is on the right

One way to represent colors is to specify the amount of red,
green, and blue (RGB) that makes up the color. The three color
“channels” are often packed into a 32-bit integer as follows:
00000000 rrrrrrrr gggggggg bbbbbbbb

where each color is represented in 8 bits. If color is a 32-bit
RGB color, which high-level expression extracts the green
channel as an 8-bit value in the range 0–255?

A.green = (color >> 8) & 0xFF

B.green = (color >> 16) & 0xFF

C.green = (color & 0xFF) >> 8

D.green = (color & 0xFF00) >> 16

E. More than one of the above (which?)

Assume color is stored in $t0 and green should be extracted
to $t1. Which sequence of MIPS instructions corresponds to
green = (color >> 8) & 0xFF

A.sll $t1, $t0, 8

andi $t1, $t1, 0xFF

B.srl $t1, $t0, 8

andi $t1, $t1, 0xFF

C.andi $t1, $t0, 0xFF

sll $t1, $t1, 8

D.andi $t1, $t0, 0xFF

srl $t1, $t1, 8

Or Truth Table

0 1

0 0 1

1 1 1

OR Operations
• Useful to set bits in a word

– Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

OR Identities (for a single bit)

• x | 0 =

• x | 1 =

01101001

| 11000111

A.00010000

B.01000001

C.10101110

D.11101111

Recall RGB:
00000000 rrrrrrrr gggggggg bbbbbbbb

If r, g, and b are values in the range 0–255, how can we
construct the RGB value, c, whose channels are r, g, and b?

A.c = (r << 16) | (g << 8) | b

B.c = (r << 24) | (g << 16) | (b << 8)

C.c = (r >> 8) | (g >> 16) | (b >> 24)

D.c = (r >> 16) | (g >> 24) | (b >> 32)

E. More than one of the above (which?)

Nor Truth Table

0 1

0 1 0

1 0 0

NOR Operations
• MIPS has NOR 3-operand instruction

– a NOR b = NOT (a OR b)

 nor $t0, $t1, $t2

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0010 0011 1111$t0

0000 0000 0000 0000 0000 1101 1100 0000$t2

01101001

NOR 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

NOT operations

• Inverts all the bits in a word
• Change 0 to 1, and 1 to 0

MIPs does not need a NOT operation because we
can use ____ for NOT $t1, $t2

A.nor $t1, $t2, $zero

B.nor $t1, $t2, $t3, where all bits in $t3 are set to 1

C.nori $t1, $t2, 0b1111111_111111111, where nori is
Nor Immediate

D. It does require a NOT operation

E. None of the above are correct

XOR Truth Table

0 1

0 0 1

1 1 0

XOR Operations
• Exclusive OR (written x ⊕ y or x ^ y)

– Set bits to one only if they are not the same

 xor $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 0001 1100 0000$t0

01101001 XOR 11000111

A. 00010000

B. 01000001

C. 10101110

D. 11101111

XOR Identities (for a single bit)

• x XOR 0 =

• x XOR 1 =

10 & 7

A. 0

B. 2

C. 7

D. 10

E. None of the above

Set bit 4 in byte x to 1, leaving the rest of the bits
unchanged

A. x = x AND 00010000

B. x = x AND 11101111

C. x = x OR 00010000

D. x = x NOR 11101111

Invert bits 2–0 of x

A. x = x AND 00000111

B. x = x OR 00000111

C. x = x NOR 00000111

D. x = x XOR 00000111

Find the ones’ complement of x (in 8 bits)

A. x XOR 00000000

B. x XOR 11111111

C. x XOR 11111110

D. x OR 11111111

Reading

• Next lecture: Branching instructions

	Slide 1: CSCI 210: Computer Architecture Lecture 9: Logical Operations
	Slide 3: CS History: Kathleen Britton
	Slide 4: Logical Operations
	Slide 5: Shift Operations
	Slide 6: MIPS shift instructions
	Slide 7: Shift left logical
	Slide 8: Shift right logical
	Slide 9: Shift right arithmetic
	Slide 10: A new op HEXSHIFTRIGHT shifts hex numbers right by a digit. HEXSHIFTRIGHT i times is equivalent to
	Slide 11: Remember Boolean Operations?
	Slide 12: And Truth Table
	Slide 13: AND Operations
	Slide 14: AND identities (for a single bit)
	Slide 15: 01101001 & 11000111
	Slide 16: If we want to zero out bits* 3 – 0 in a byte we should AND with
	Slide 17: One way to represent colors is to specify the amount of red, green, and blue (RGB) that makes up the color. The three color “channels” are often packed into a 32-bit integer as follows: 00000000 rrrrrrrr gggggggg bbbbbbbb where each color is rep
	Slide 18: Assume color is stored in $t0 and green should be extracted to $t1. Which sequence of MIPS instructions corresponds to green = (color >> 8) & 0xFF
	Slide 19: Or Truth Table
	Slide 20: OR Operations
	Slide 21: OR Identities (for a single bit)
	Slide 22: 01101001 | 11000111
	Slide 23: Recall RGB: 00000000 rrrrrrrr gggggggg bbbbbbbb If r, g, and b are values in the range 0–255, how can we construct the RGB value, c, whose channels are r, g, and b?
	Slide 24: Nor Truth Table
	Slide 25: NOR Operations
	Slide 26: 01101001 NOR 11000111
	Slide 27: NOT operations
	Slide 28: MIPs does not need a NOT operation because we can use ____ for NOT $t1, $t2
	Slide 29: XOR Truth Table
	Slide 30: XOR Operations
	Slide 31: 01101001 XOR 11000111
	Slide 32: XOR Identities (for a single bit)
	Slide 33: 10 & 7
	Slide 34: Set bit 4 in byte x to 1, leaving the rest of the bits unchanged
	Slide 35: Invert bits 2–0 of x
	Slide 36: Find the ones’ complement of x (in 8 bits)
	Slide 37: Reading

